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An iterative quadratic maximum likelihood (IQML) method is  than nonparametrical approaches, such as the maximum ¢
applied to spectral parameter estimation of 1D NMR data. A tropy method 3).
carefgl comparison of the Iine_a_r prediction (LP) method based on The accuracy of the estimation of damping factors by the L
the singular value decomposition, the total least squares (TLS)  anq TS methods is especially sensitive to noise perturbatior
method, and IQML has clearly demonstrated that IQML is supe- s sansitivity in turn affects the accuracy of the estimation a
rior to both the LP and TLS methods in terms of the accuracy and amplitudes and phases. The present paper is concerned with

bias of the estimation. The superiority of the IQML method lies in . . . ) . ) |
the fact that constraints on the NMR signal can easily be incor- alternative parametric algorithm, the iterative quadratic max

porated into the iterative process. The iterative quadratic maxi- Mum likelihood (IQML) methodg, 10 for spectral analysis. It
mum likelihood method can be used to analyze NMR data directly has been demonstrated in a preliminary qualitative evaluatic
or to provide a starting point for further data refinement. o108 Of the IQML method {1) that this method is much more
Academic Press accurate than the LP method. Here, a detailed comparis

Key Words: iterative quadratic maximum likelihood method, among the LP, TLS, and IQML methods shows that the IQML
IQML; linear prediction, LP; total least squares, TLS; data method is statistically superior to the LP and TLS methods i
processing. terms of the accuracy and bias of the estimated spectral
rameter.

INTRODUCTION METHODS

tr Eﬁ?r:fnt% or\]/e'r:cFo_I[n € theh|ntr||n3\|/crllm||tattilorr:s r?zStif;ut:Ier: q inIn the application of the IQML method to NMR signal
ansformation (FFT), such as low resolution and sidebands rocessing we are only interested in estimating the time dt

truncated data and short time series due to limited observatfégm signal which is a superposition of exponentially dampe

time of the instryment or samples, .have triggered develogl— nals in noise. The model for the IQML method is the sam
ments of alternative spectral processing algorithms. For exa] " that of the linear prediction method and can be stated

ple, the maximum entropy (MEMLED), linear prediction (LP)
4-6), total least TLSYX and maximum likelihood T0NoWS:
(4-), total least squares (TLSY and maximum likelihoo Given a 1D FID signal oN equal-space sampled complex
(ML) (8) methods, among others, have been developed. . _ -
o ) ~ .. data points, &.,/n =0, 1, 2, ...N — 1}, and made up oM
To quantitatively analyze NMR spectra, the linear predictio onentially damped sinusoids embedded in random nois

and total least-squares methods, based on singular value ﬁ%) . .
o : . ' . . the experimentally measurable data poijsan be expressed
composition 4), which offer higher resolution than FFT in the xpen y sy POy Xpress

case of truncation or short data series, can be used to estimate

the amplitudes, phases, frequencies, and damping factors of

resonances directly from an experimental FID without prepro- M ] )

cessing. The LP and TLS methods, as parametric methods’n = > {acexd ju} exd (ay + j2afnAt] + e,

have an advantage for the quantitative analysis of spectra in k=t

that these methods do not require complicated procedures to n=0,1,2,... N—1, [1]
determine the intensities and frequencies of peaks and thereby
allow easier estimation of the spectral parameters. However,
one of the disadvantages of these approaches is that they are = 2 Ot €= Xt €,
less straightforward to extend to multidimensional methods k=1

M

1 To whom correspondence should be addressed. wherej = V —1, ¢, = a, exp[j¢,] with a, and ¢, being the
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signal amplitude and phase, is the additive Gaussian noise, A maximum likelihood estimation algorithm, named the

and z, = exp[(ax + j2=f)At] with «, and f, being the
damping factor and frequency, respectivelj.in Eq. [1] can
be written into a matrix form

IQML method @, 10, has been proposed to solve the abov
least-squares problem. It only requires the solution of

quadratic minimization problem at each step and converge
in a small number of steps (normally less than 5). Th

x'=T'c, [2] proposed IQML algorithmX1), for the quantitative analysis
of 1D NMR data, is composed of the following steps, (1)
where X’ = [Xp, X, ..., XN_4]" denotes the vector of through (VII). Iteration of the method stops when the con
noiseless datac’ = [cy, ..., Cy]" is the vector of complex vergence criterion is met.

amplitudes, and the matriX’ is an N X M matrix with
elementsT} = z. T indicates the transposition.

Step (1). Initialization,
setk=0andb, =[1, 1,..., 1]; orb, = a constant vector.

Under the white Gaussian noise assumption, the maximum Step (II). Compute
likelihood (ML) method estimates of the vectorand matrix
T’ are obtained by solving the following nonlinear least- C® = X*(BB*) X, [7]
squares problem min|x — x’||, where| - | represents the
Euclidean norm, and the vectaris the given experimental

data vectorx = [ Xg, Xy, - . . , Xy_1] - For anyT’ the optimal

estimate of’ is known to bec’ = (T'*T') T’ *x, and hence

the least-squares error is
E = [lef = x"(1 — Pp)x, 3]

where © denotes the Hermitian conjugate, a4 = T’

based on Egs. [4] and [5].
Step (lll). Solve the quadratic minimization problem

P + K
min b, 1,C*b ),

bk+1)EO

where6 is the constraint (see below) on the coefficidntd =

(T"*T')"XT'* is the projection matrix off’. The nonlinear 0, 1, ..., M.
least-squares problem, Eq. [3], only involves one set of vari- Step (IV). Increase, k = k + 1.
ables,T’. According to the Linerar Prediction principle, there  Step (V). Check the convergendi,,_1y — byl < €?

is a vectorb = [by, by, ..., by]" with by = 1 such that the
(N — M) X N Toeplitz matrixB defined as
[ by bys ... b, 1 0 ... 0]
O bM bM,l P bl 1 0 0
B_| - . . cee
L O . bM bM_l . . 0 bl 1 -

[4]

satisfies the equatioBT’ = 0. SinceB has rankN — M and
T’ has rankM, this means that the projed®z = B*
(BB*) B is the orthogonal complement ®y, i.e., Py = 1
— P;. Hence the least-squares eriican be expressed as

E = x"Pgx = b*X*(BB*)Xb, 5]

whereX is defined as

Xm  Xu-1 Xo
Xm+1 Xm Xy
X = . . e . , (6]
L Xn-1 Xn-1 -+ 0 XNn-m-1

thereby satisfyind3x = X b.

If yes, go to Step (VI).
If no, go to Step (11).
Step (VI). Find the frequencies, and damping factors fror
the roots of the characteristic polynomial formed liy,

"+ b,z + bz P+ -+ by =0 [8]

and then the damping factors and frequencies are expressec

1
oy = Kt |n|Zk|,
1 _Im(Z)
f,=— tant )
2mAt Re(Z)

Step (VII). Amplitudes and phases can be obtained b
substituting the damping factors and frequencies obtaine
above into Eq. [1], and solving the corresponding least-squar
problem again.

Whenb, = [1, 1, ... 1], theresult obtained after the first
iteration is the same as the LP method. The constraints tt
could be implemented for NMR applications in Step (lll) are
listed in the following: (a) constrain roots to be outside the uni
circle for the backward LP arrangement to distinguish thi
signals from the noise, (b) b} = O for real time series, (c)
forward and backward LP constraints bn(6) which can be
used for more accurate estimation, and (d) constrain roots to
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inside or on the unit circle for the stability of IQML. These TABLE 1
constraints can be used individually or combined according to The Theoretical Parameter Values of the Simulated Signal
the application, thereby resulting in better estimates of spect&al

parameters. f(Hz) o (Hz) a, x 10° ¢y (degrees)
1 3100.0 -18.0 40.0 70.0
RESULTS AND DISCUSSION 2 2400.0 -7.0 18.0 80.0
3 1900.0 -9.0 30.0 30.0
- . : . 4 1400.0 -15.0 24.0 150.0
Similar parametric algorithms used in NMR applications, 1200.0 _13.0 200 900

namely, the LP and TLS methods, employ a simpler linegr —140.0 —12.0 15.0 180.0
least-squares approach 6, 7) to estimate spectral parameters
by using the fact that NMR data in general satisfy the model

L+1 %
V
M b’ = — E % vl [12]
Xn = - E b Xn— L] M = n < N, [9] i=p+1
L=1 o > (V)2

i=p+1

whereM andb,, are the LP order and the LP coefficients. Thiﬁ/herep is the effective rank ofA’:
model is also implied in the IQML algorithm, Egs. [4] and [5]'matrix expressed as

The above equation when applied to a time series can be

written as

Vj is the row partition

V, *

e w9
x = —Ab, “

and * represents the complex conjugate. Following the san

whereA is the N —M) X M LP matrix, b is the forward LP procedures as in Steps (VI) and (VII) of the IQML method,

vector, and thex is the observation vector. From the lineaspectral parameters can be obtained. Since NMR data canr

least-squares method, the LP mathixcan be decomposed byin general, be approximated by stationary signals, except whi

the SVD (singular value decomposition) method as T, and T, of the signals are very long, we only adopt the
forward or backward LP matrix, which contains no covariance
A= UAV" [10] matrix elements.

To statistically evaluate the performance of the LP, MLP

. . L TLS, and IQML methods in estimating the spectral paramete
whereA is a diagonal matrix with its diagonal elementg, the ¢ MR signals, we quantitatively compared the accuracy c
singular values oA, being positive numbers)j andV are the e | p, MLP, and TLS methods with that of the IQML method

corr.esponding left _qnd right singular_ r_natrice*’s.indicates by applying them to the first 128 complex data points o
conjugate transposition. The LP coefficient vectorcan be  gimyjated FID signals. This FID consisted of six component

found as as listed in Table 1, and were sampled at 1@0intervals, at
a signal-to-noise ratio (SNR) of 20 dB. The SNR was define
b=VAUx. [11] as
The spectral frequencies, damping factors, amplitudes and SNR= 10 Iogazmax [14]
phases can then be calculated following Steps (VI) and (VII) of o’

the IQML algorithm. It is known that the bias of SVD can be
compensated for by subtracting the average of the singuleherea,, ., ando were the maximum amplitude value and the
values related to the noise from the singular values relatedvariance of added noise, respectively. For each estimatic
the signal (we abbreviated this method as the MLP or timethod, 50 separate trials were performed each using a diffe
modified LP method)5) resulting in a more accurate estimaent sequence to generate The LP order, SNR, and the rank
tion of the spectral parameters. used were 26, 20 dB, and 6 correspondingly. The average
Furthermore, improvement can be achieved if noise is cafie estimated spectral parameters and their standard deviati
sidered to perturb both the LP and observation matrices ace tabulated in Table 2. It is clearly shown in Table 2 that th
cording to the TLS principle®). The N — M) X (M + 1) IQML method yields much smallek values (the sum of the
augmented matridA’ = [x, A] can be decomposed in the samelifference of the theoretical values and their calculated value
manner as shown in Eq. [10]. The LP vechdris shown to be and RMSD (root-mean-square deviation). This demonstrat
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TABLE 2
Estimation of Spectral Parameters from LP, Modified LP, TLS, and IQML Methods with LP Order and True Rank
Being 26 and 6, Respectively, and the Signal-to-Noise Ratio Is 20dB

k f(Hz) a,(Hz) a, X 10 ¢, (degrees)
LP
1 3099.9+ 0.9 -17.7+x1.0 39.9+ 1.4 70.3t 2.0
2 2400.2+ 1.3 —6.3x1.2 175 1.1 79.3+ 3.2
3 1900.0* 0.7 —8.7+0.8 29.8+ 1.1 30.1+ 1.9
4 1400.4*+ 1.4 —142+1.2 24.3+ 1.2 149.1+ 3.4
5 1199.0+ 1.4 —-121*1.6 19.4+ 1.3 92.3+= 3.1
6 —139.5*+ 2.0 —104=* 2.1 14.2+ 1.4 179.0= 4.7
A 2377 4679 2575 5.3+ 18.3
MLP
1 3099.9+ 0.9 —17.7*x1.0 39.9+ 1.4 70.3= 2.0
2 2400.2+ 1.3 —-6.3+1.2 17.6+ 1.1 79.3t 3.2
3 1900.0= 0.7 —-8.7£ 0.8 29.8+ 1.1 30.1+ 1.9
4 1400.4+ 1.4 —143*1.2 24.3+ 1.2 149.2+ 3.4
5 1199.0+ 1.4 —-122+ 1.6 19.4*+ 1.3 92.2+ 3.1
6 —139.5+ 2.0 —-105*x 2.1 143+ 1.4 179.0= 4.7
A 2377 4.3+79 23+ 75 5.1+ 18.3
TLS
1 3099.9+ 0.9 —-18.1*x1.0 40.2*+ 1.4 70.4+x 2.0
2 2400.2+ 1.3 —6.8+1.2 18.0+ 1.1 79.4+ 3.1
3 1900.0* 0.7 —-9.0+0.8 30.1+ 1.1 30.0 1.9
4 1400.1+ 1.4 —-15.1*+ 1.3 251+ 1.2 149.8+ 34
5 1199.7+= 1.4 —-13.1+ 1.6 20.1+ 1.3 90.8+ 3.1
6 —139.8*+ 2.0 —121+2.1 15.1+ 1.3 179.6= 4.7
A 09x77 0.6+ 8.0 16+ 7.4 2.4+ 18.2
IQML
1 3099.7+ 0.7 —-18.0+ 0.9 40.1+ 1.0 70.5t 1.8
2 2400.1+ 0.9 -6.9+1.0 18.0+ 1.0 79.6x 2.6
3 1900.0* 0.6 -9.0+ 0.7 30.1+ 0.9 30.0+ 1.8
4 1400.1+ 1.0 —-152+1.2 25.2+ 1.0 149.7= 2.7
5 1199.7+ 1.2 —-13.1*x13 20.1+ 1.3 90.6+ 2.9
6 —140.0+ 1.4 —12.0*x 1.6 151+ 1.1 180.1+ 4.0
A 0.8+5.38 0.4+ 6.7 1.6* 6.3 1.9+ 15.8

Note.A = 38 ,|AT — AM| = 38 |R/|, with AT, AM, andR; being the theoretical values listed in Table 1, the corresponding mean values, and RMSD lis
in Table 2.

that the IQML method is the least bias and the most accurate extraneous or noise signal. When the SNR of the signal
parametric method followed, in order, by the TLS, MLP, andot high and the LP order is relatively small (LP order shoulc
LP methods. be larger or equal to the “true” ran¥, all methods will yield

It is well known that the performance of the LP, MLP, an@rroneous estimates or missing peaks. A systematic charact
TLS methods depends strongly on the LP order, rank, SNRation of these methods was conducted to reveal the correl
and the number of data points in the FID used in the calculden between the LP order and errors of the estimation b
tion. In a more general qualitative comparison of these metarying the LP order and monitoring the estimation errors. |
ods, we allowed the LP orde¥, to vary from 6 to 50 and the practice it was not straightforward to calculate estimation el
SNR to vary from 10 to 20 dB. The effective rapkvas set to rors since in some trials classifying a peak as erroneous w
be 6 since there are 6 resonances in the simulated signals difiicult and some peaks could not be retrieved. To circumver
the first 128 complex data points of the simulated FIDs wetkese problems the retrieval of a resonance was used to ev
used. It is advantageous to use the backward LP predictioate the methods as from the previous simulation we knew th
scheme, as all the signal roots have to be outside the unit cirtle estimates of frequencies were normally quite accurate. F
provided that the SNR is not too low, and the roots of the noisepeak to be considered retrieved, its frequency and amplitu
tend to fall inside the unit circle. This constraint was implehad to satisfy f, — f,] < 100 Hz anda, — a,] < 5 X 10%,
mented in Step (l11) of the IQML method. In these calculationsyith the subscriptt denoting the theoretical values in the
all the singular values after firgt singular values were set tosimulated signals and being the estimated values obtained
zero, and any root falling inside the unit circle was treated &®»m these methods. More relaxed or stringent criteria could k
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TABLE 3
Number of Trials among Total 50 Trials in Which Estimations Did Not Miss Any Peak with the Rank Being 6

LP order
SNR
(dB) 6 10 14 18 22 26 30 34 38 42 46 50
20
LP 0 0 0 28 48 50 50 50 50 50 50 50
MLP 0 0 0 29 48 50 50 50 50 50 50 50
TLS 0 12 48 49 50 50 50 50 50 50 50 50
IQML 0 49 50 50 50 50 50 50 50 50 50 50
15
LP 0 0 0 0 1 31 38 43 45 42 40 46
MLP 0 0 0 0 1 34 39 44 46 44 41 45
TLS 0 2 22 35 35 44 43 45 48 45 44 44
IQML 0 26 39 44 46 47 45 47 a7 46 a7 45
10
LP 0 0 0 0 0 0 1 2 8 6 7 9
MLP 0 0 0 0 0 0 1 3 11 8 10 11
TLS 0 0 3 6 5 12 16 16 15 16 22 19
IQML 0 1 5 11 12 10 19 15 15 13 23 19

used; however, this would not affect the comparison of chaterations are proper for other cases. It is recommended to u
acteristics of the LP, MLP, TLS, and IQML methods in thes2 to 4 iterations in the general study.
conditions. The data listed in Table 3 clearly indicate that the Here, we demonstrate that this method is the most robu
IQML method is much less susceptible to noise perturbatiomy processing an experimental BC sucrose NMR spec-
For example, the IQML method, with LP order and rank beinggum, recorded on a Bruker ARX 300, when compared witt
14 and 6 retrieved all 6 resonances in the simulated signalglie other paramatric methods described above. To make t
39 out of 50 trials (78%) at a 15-dB noise level, whereas, tlspectral line widths more similar to those Of or 3P
only partially successful method, the TLS method retrievespectra, Cr(acag)0.01-M concentration) was added to the
these resonances in 22 of the trials (44%). sample. In order to statistically compare the IQML methoc
If the “true” rank of the experimental data is not known among the TLS and LP methods, we average the estimat
priori and in order not to miss any peaks, we would normall@ML, TLS, and LP spectra calculated starting from the
choose a large number for the true rgmkWe applied the LP, third, fourth, fifth, and sixth data points, with effectively
MLP, TLS, and IQML methods to the first 128 complex datdifferent noise entries, with the LP order being the evel
points of a simulated FID containing 1024 complex data pointaimbers between 12 and 40. The first two data points we
with the LP order and the rank being 24. Figures la and bimitted because, due to switch off/on time of the receivel
display the spectra obtained by FT of the simulated FID witihese data were not measured accurately. The rank used v
and without additive noise. Figures 1c—1f show the spectthosen to be 12 as there are 12 carbon peaks for this sucro
calculated from the LP, MLP, TLS, and IQML algorithms byThe number of complex data points used for these calcul:
averaging the 50 spectra calculated from the parameters etstin was 128 and 1024 complex data points were recorde
mated from each of the 50 simulated FIDs which containswéth 20 scans. Figure 2A shows the TSC sucrose FFT
different random noise generated at a SNR of 10 dB. Thesgectrum. Figure 2B shows the 1D averagdd sucrose LP
spectra clearly indicate that the IQML algorithm is much moneeconstructed spectrum obtained according to the aforeme
robust than the TLS and LP methods even when the rank is tiothed conditions. Figures 2C and 2D show the 1D TLS an
known. From Table 2 and Fig. 1 of this study, the MLP metho)ML reconstructed spectra in which the calculated phase
is only slightly more robust than the LP method and the TL®ere not used, since each calculation involved differer
method is noticably better than both the MLP and LP methodgarting points. Under these circumstances, the IQM
It is important to point out thattb(kﬂ) - b(k)|| < eis not method has retrieved all the resonances, whereas the T
always applicable as the termination criterion. When the SN&hd LP spectra have either missing peaks or artifacts
is high, this criterion can be reached within 5 iterations in o@mplitude and frequency due to inaccurate estimation of tt
testife = 10~ * was used. When the SNR is low, the algorithrfrequencies and amplitudes of the resonance peaks. As t
may not converge by using this criterion. In the simulatioperformance of the MLP method is very similar to the LP
reported here, we used 5 iterations in each case rather thanhéthod (Fig. 1 and Table 3), it is not needed for this
termination criterion. However, there is no guarantee thatevaluation. Figure 2 clearly indicates that the IQML methoc
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calculations with different noise entries. Whereas in the LI
calculation, these erroneous signals and very often the tri
(a) signals cannot be selected according to our selection rul
described in the text resulting in relatively smooth baseline:
CONCLUSION
Through the detailed study described above, we can co
clude that the IQML method is the most accurate parametr
() UM method for estimating spectral parameters from simulate
}( ) ]
(A)
(©)
Lo
(d)
U B
E . \_LJJLLA‘
@) E J |
= =
hm U 2
<
©) l
1 0 -1
KHZ D)
FIG. 1. (a)—(b) The 1D spectrum obtained by Fourier transform of a
simulated FID containing 1024 complex data points with and without 10 dB
additive noise. Parts (c)—(f) show the spectra calculated from the LP, MLP,
TLS, and IQML algorithms by averaging the 50 spectra calculated from the
parameters estimated from each of the 50 simulated FIDs which contains a J
different random noise generated at a SNR of 10 dB. LP order and rank used L
for the calculation were 24.

I | |
is much more robust than TLS and LP methods over a broad -2000 0 2000
range of conditions. The doublet around 1000 Hz cannot be Frequency [Hz]
fully resolved by these parametric methods because the _
number of the FID used for calculating the spectra shown inFIG. 2. (A) The 1D Fourier-transformed®C sucrose NMR spectrum.
Fi oB d 2C i t h. Th g%)—(D) The spectra obtained from the LP, TLS, and IQML methods, average
Igs. an IS not large enougn. € presence ‘er spectra calculated using 128 complex data points starting from the thir

noise-like peaks in Figs. 1 and 2 for the TLS and IQML igurth, fifth, and sixth data points with the LP order being the even number
due to inaccurate estimation of resonances in a few of th&ween 12 and 40, and the rank used being 12.
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and experimental FID data sets. However, due to the greater

computational complexity of the IQML method, it is about
In thié' S. F. Gull, and D. J. Daniell, Nature 272, 686-690 (1978).

a few times slower than the LP and TLS methods.
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