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An iterative quadratic maximum likelihood (IQML) method is
applied to spectral parameter estimation of 1D NMR data. A
careful comparison of the linear prediction (LP) method based on
the singular value decomposition, the total least squares (TLS)
method, and IQML has clearly demonstrated that IQML is supe-
rior to both the LP and TLS methods in terms of the accuracy and
bias of the estimation. The superiority of the IQML method lies in
the fact that constraints on the NMR signal can easily be incor-
porated into the iterative process. The iterative quadratic maxi-
mum likelihood method can be used to analyze NMR data directly
or to provide a starting point for further data refinement. © 1998
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INTRODUCTION

Efforts to overcome the intrinsic limitations offast fourier
transformation (FFT), such as low resolution and sidebands in
truncated data and short time series due to limited observation
time of the instrument or samples, have triggered develop-
ments of alternative spectral processing algorithms. For exam-
ple, the maximum entropy (MEM) (1–3), linear prediction (LP)
(4–6), total least squares (TLS) (7), and maximum likelihood
(ML) (8) methods, among others, have been developed.

To quantitatively analyze NMR spectra, the linear prediction
and total least-squares methods, based on singular value de-
composition (4), which offer higher resolution than FFT in the
case of truncation or short data series, can be used to estimate
the amplitudes, phases, frequencies, and damping factors of
resonances directly from an experimental FID without prepro-
cessing. The LP and TLS methods, as parametric methods,
have an advantage for the quantitative analysis of spectra in
that these methods do not require complicated procedures to
determine the intensities and frequencies of peaks and thereby
allow easier estimation of the spectral parameters. However,
one of the disadvantages of these approaches is that they are
less straightforward to extend to multidimensional methods

than nonparametrical approaches, such as the maximum en-
tropy method (3).

The accuracy of the estimation of damping factors by the LP
and TLS methods is especially sensitive to noise perturbations.
This sensitivity in turn affects the accuracy of the estimation of
amplitudes and phases. The present paper is concerned with an
alternative parametric algorithm, the iterative quadratic maxi-
mum likelihood (IQML) method (9, 10) for spectral analysis. It
has been demonstrated in a preliminary qualitative evaluation
of the IQML method (11) that this method is much more
accurate than the LP method. Here, a detailed comparison
among the LP, TLS, and IQML methods shows that the IQML
method is statistically superior to the LP and TLS methods in
terms of the accuracy and bias of the estimated spectral pa-
rameter.

METHODS

In the application of the IQML method to NMR signal
processing we are only interested in estimating the time do-
main signal which is a superposition of exponentially damped
signals in noise. The model for the IQML method is the same
as that of the linear prediction method and can be stated as
follows.

Given a 1D FID signal ofN equal-space sampled complex
data points, {xnun 5 0, 1, 2, . . . ,N 2 1}, and made up ofM
exponentially damped sinusoids embedded in random noise,
the experimentally measurable data pointsxn can be expressed
as

xn 5 O
k51

M

$ak exp@ jfk#% exp@~ak 1 j2pfk!nDt# 1 en,

n 5 0, 1, 2, . . . ,N 2 1 , [1]

5 O
k51

M

ckzk
n 1 en 5 x9n 1 en,

wherej 5 =21, ck 5 ak exp[jfk] with ak andfk being the1 To whom correspondence should be addressed.
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signal amplitude and phase,en is the additive Gaussian noise,
and zk 5 exp[(ak 1 j2pfk)Dt] with ak and fk being the
damping factor and frequency, respectively.x9n in Eq. [1] can
be written into a matrix form

x* 5 T *c*, [2]

where x* 5 [ x90, x91, . . . , x9N21]T denotes the vector of
noiseless data.c* 5 [c1, . . . , cM]T is the vector of complex
amplitudes, and the matrixT* is an N 3 M matrix with
elementsT*ij 5 zj

i. T indicates the transposition.
Under the white Gaussian noise assumption, the maximum

likelihood (ML) method estimates of the vectorc* and matrix
T* are obtained by solving the following nonlinear least-
squares problem minc*,T*ix 2 x*i, wherei z i represents the
Euclidean norm, and the vectorx is the given experimental
data vector,x 5 [ x0, x1, . . . , xN21]T. For anyT* the optimal
estimate ofc* is known to bec* 5 (T*1T*)21T*1x, and hence
the least-squares error is

E 5 iei 5 x1~I 2 PT!x, [3]

where 1 denotes the Hermitian conjugate, andPT 5 T*
(T*1T*)21T*1 is the projection matrix ofT*. The nonlinear
least-squares problem, Eq. [3], only involves one set of vari-
ables,T*. According to the Linerar Prediction principle, there
is a vectorb 5 [b0, b1, . . . , bM]T with b0 5 1 such that the
(N 2 M) 3 N Toeplitz matrixB defined as

B 5 3
bM bM21 . . . b1 1 0 . . . . . . 0
0 bM bM21 . . . b1 1 0 . . . 0
. . . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
0 . bM bM21 . . . b1 1

4
[4]

satisfies the equationBT* 5 0. SinceB has rankN 2 M and
T* has rank M, this means that the projectPB 5 B1

(BB1)21B is the orthogonal complement toPT, i.e., PB 5 1
2 PT. Hence the least-squares errorE can be expressed as

E 5 x1PBx 5 b1X1~BB1!21Xb, [5]

whereX is defined as

X 5 3
xM xM21 . . . x0

xM11 xM . . . x1

. . . . . .

. . . . . .

. . . . . .
xN21 xN21 . . . xN2M21

4 , [6]

thereby satisfyingBx 5 X b.

A maximum likelihood estimation algorithm, named the
IQML method (9, 10), has been proposed to solve the above
least-squares problem. It only requires the solution of a
quadratic minimization problem at each step and converges
in a small number of steps (normally less than 5). The
proposed IQML algorithm (11), for the quantitative analysis
of 1D NMR data, is composed of the following steps, (I)
through (VII). Iteration of the method stops when the con-
vergence criterion is met.

Step (I). Initialization,
set k5 0 andb0 5 [1, 1, . . . , 1]; orb0 5 a constant vector.

Step (II). Compute

C~k! 5 X1~BB1!21 X, [7]

based on Eqs. [4] and [5].
Step (III). Solve the quadratic minimization problem

min
b~k11![u

b~k11!
1 C~k!b~k11!,

whereu is the constraint (see below) on the coefficientsbi, i 5
0, 1, . . . , M.

Step (IV). Increasek, k 5 k 1 1.
Step (V). Check the convergence,ib(k21) 2 b(k)i , e?

If yes, go to Step (VI).
If no, go to Step (II).

Step (VI). Find the frequencies, and damping factors from
the roots of the characteristic polynomial formed byb(k),

ZM 1 b1Z
M21 1 b2Z

M22 1 · · ·1 bM 5 0 [8]

and then the damping factors and frequencies are expressed as

ak 5
1

Dt
lnuZku,

fk 5 2
1

2pDt
tan21

Im~Zk!

Re~Zk!
.

Step (VII). Amplitudes and phases can be obtained by
substituting the damping factors and frequencies obtained
above into Eq. [1], and solving the corresponding least-squares
problem again.

When b0 5 [1, 1, . . . 1], theresult obtained after the first
iteration is the same as the LP method. The constraints that
could be implemented for NMR applications in Step (III) are
listed in the following: (a) constrain roots to be outside the unit
circle for the backward LP arrangement to distinguish the
signals from the noise, (b) Im(b) 5 0 for real time series, (c)
forward and backward LP constraints onb (6) which can be
used for more accurate estimation, and (d) constrain roots to be
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inside or on the unit circle for the stability of IQML. These
constraints can be used individually or combined according to
the application, thereby resulting in better estimates of spectral
parameters.

RESULTS AND DISCUSSION

Similar parametric algorithms used in NMR applications,
namely, the LP and TLS methods, employ a simpler linear
least-squares approach (4, 5, 7) to estimate spectral parameters
by using the fact that NMR data in general satisfy the model

xn 5 2 O
L51

M

bLxn2L, M # n , N, [9]

whereM andbn are the LP order and the LP coefficients. This
model is also implied in the IQML algorithm, Eqs. [4] and [5].
The above equation when applied to a time series can be
written as

x 5 2Ab ,

whereA is the (N 2M) 3 M LP matrix,b is the forward LP
vector, and thex is the observation vector. From the linear
least-squares method, the LP matrixA can be decomposed by
the SVD (singular value decomposition) method as

A 5 ULV1, [10]

whereL is a diagonal matrix with its diagonal elements,lii , the
singular values ofA, being positive numbers;U andV are the
corresponding left and right singular matrices.1 indicates
conjugate transposition. The LP coefficient vector,b, can be
found as

b 5 VL21U1x. [11]

The spectral frequencies, damping factors, amplitudes and
phases can then be calculated following Steps (VI) and (VII) of
the IQML algorithm. It is known that the bias of SVD can be
compensated for by subtracting the average of the singular
values related to the noise from the singular values related to
the signal (we abbreviated this method as the MLP or the
modified LP method) (5) resulting in a more accurate estima-
tion of the spectral parameters.

Furthermore, improvement can be achieved if noise is con-
sidered to perturb both the LP and observation matrices ac-
cording to the TLS principle (7). The (N 2 M) 3 (M 1 1)
augmented matrixA* 5 [x, A] can be decomposed in the same
manner as shown in Eq. [10]. The LP vectorb* is shown to be

b* 5 2 O
i5p11

L11

3
~vk!*1

O
i5p11

L11

u~vi!1u24v*k, [12]

where p is the effective rank ofA*; v*k is the row partition
matrix expressed as

vk 5 F ~vk!*1
v*k

G [13]

and * represents the complex conjugate. Following the same
procedures as in Steps (VI) and (VII) of the IQML method,
spectral parameters can be obtained. Since NMR data cannot,
in general, be approximated by stationary signals, except when
T1 and T2 of the signals are very long, we only adopt the
forward or backward LP matrix, which contains no covariance
matrix elements.

To statistically evaluate the performance of the LP, MLP,
TLS, and IQML methods in estimating the spectral parameters
of NMR signals, we quantitatively compared the accuracy of
the LP, MLP, and TLS methods with that of the IQML method
by applying them to the first 128 complex data points of
simulated FID signals. This FID consisted of six components
as listed in Table 1, and were sampled at 100ms intervals, at
a signal-to-noise ratio (SNR) of 20 dB. The SNR was defined
as

SNR5 10 log
amax

2

s2 , [14]

whereamax ands were the maximum amplitude value and the
variance of added noise, respectively. For each estimation
method, 50 separate trials were performed each using a differ-
ent sequence to generateen. The LP order, SNR, and the rank
used were 26, 20 dB, and 6 correspondingly. The average of
the estimated spectral parameters and their standard deviations
are tabulated in Table 2. It is clearly shown in Table 2 that the
IQML method yields much smallerD values (the sum of the
difference of the theoretical values and their calculated values)
and RMSD (root-mean-square deviation). This demonstrates

TABLE 1
The Theoretical Parameter Values of the Simulated Signal

k fk(Hz) ak(Hz) ak 3 104 fk(degrees)

1 3100.0 218.0 40.0 70.0
2 2400.0 27.0 18.0 80.0
3 1900.0 29.0 30.0 30.0
4 1400.0 215.0 24.0 150.0
5 1200.0 213.0 20.0 90.0
6 2140.0 212.0 15.0 180.0

39ITERATIVE QUADRATIC MAXIMUM LIKELIHOOD METHOD



that the IQML method is the least bias and the most accurate
parametric method followed, in order, by the TLS, MLP, and
LP methods.

It is well known that the performance of the LP, MLP, and
TLS methods depends strongly on the LP order, rank, SNR,
and the number of data points in the FID used in the calcula-
tion. In a more general qualitative comparison of these meth-
ods, we allowed the LP order,M, to vary from 6 to 50 and the
SNR to vary from 10 to 20 dB. The effective rankp was set to
be 6 since there are 6 resonances in the simulated signals and
the first 128 complex data points of the simulated FIDs were
used. It is advantageous to use the backward LP prediction
scheme, as all the signal roots have to be outside the unit circle
provided that the SNR is not too low, and the roots of the noise
tend to fall inside the unit circle. This constraint was imple-
mented in Step (III) of the IQML method. In these calculations,
all the singular values after firstp singular values were set to
zero, and any root falling inside the unit circle was treated as

an extraneous or noise signal. When the SNR of the signal is
not high and the LP order is relatively small (LP order should
be larger or equal to the “true” rankp), all methods will yield
erroneous estimates or missing peaks. A systematic character-
ization of these methods was conducted to reveal the correla-
tion between the LP order and errors of the estimation by
varying the LP order and monitoring the estimation errors. In
practice it was not straightforward to calculate estimation er-
rors since in some trials classifying a peak as erroneous was
difficult and some peaks could not be retrieved. To circumvent
these problems the retrieval of a resonance was used to eval-
uate the methods as from the previous simulation we knew that
the estimates of frequencies were normally quite accurate. For
a peak to be considered retrieved, its frequency and amplitude
had to satisfyu ft 2 feu , 100 Hz anduat 2 aeu , 5 3 104,
with the subscriptt denoting the theoretical values in the
simulated signals ande being the estimated values obtained
from these methods. More relaxed or stringent criteria could be

TABLE 2
Estimation of Spectral Parameters from LP, Modified LP, TLS, and IQML Methods with LP Order and True Rank

Being 26 and 6, Respectively, and the Signal-to-Noise Ratio Is 20dB

k fk(Hz) ak(Hz) ak 3 104 fk(degrees)

LP
1 3099.96 0.9 217.76 1.0 39.96 1.4 70.36 2.0
2 2400.26 1.3 26.36 1.2 17.56 1.1 79.36 3.2
3 1900.06 0.7 28.76 0.8 29.86 1.1 30.16 1.9
4 1400.46 1.4 214.26 1.2 24.36 1.2 149.16 3.4
5 1199.06 1.4 212.16 1.6 19.46 1.3 92.36 3.1
6 2139.56 2.0 210.46 2.1 14.26 1.4 179.06 4.7
D 2.36 7.7 4.66 7.9 2.56 7.5 5.36 18.3

MLP
1 3099.96 0.9 217.76 1.0 39.96 1.4 70.36 2.0
2 2400.26 1.3 26.36 1.2 17.66 1.1 79.36 3.2
3 1900.06 0.7 28.76 0.8 29.86 1.1 30.16 1.9
4 1400.46 1.4 214.36 1.2 24.36 1.2 149.26 3.4
5 1199.06 1.4 212.26 1.6 19.46 1.3 92.26 3.1
6 2139.56 2.0 210.56 2.1 14.36 1.4 179.06 4.7
D 2.36 7.7 4.36 7.9 2.36 7.5 5.16 18.3

TLS
1 3099.96 0.9 218.16 1.0 40.26 1.4 70.46 2.0
2 2400.26 1.3 26.86 1.2 18.06 1.1 79.46 3.1
3 1900.06 0.7 29.06 0.8 30.16 1.1 30.06 1.9
4 1400.16 1.4 215.16 1.3 25.16 1.2 149.86 3.4
5 1199.76 1.4 213.16 1.6 20.16 1.3 90.86 3.1
6 2139.86 2.0 212.16 2.1 15.16 1.3 179.66 4.7
D 0.96 7.7 0.66 8.0 1.66 7.4 2.46 18.2

IQML
1 3099.76 0.7 218.06 0.9 40.16 1.0 70.56 1.8
2 2400.16 0.9 26.96 1.0 18.06 1.0 79.66 2.6
3 1900.06 0.6 29.06 0.7 30.16 0.9 30.06 1.8
4 1400.16 1.0 215.26 1.2 25.26 1.0 149.76 2.7
5 1199.76 1.2 213.16 1.3 20.16 1.3 90.66 2.9
6 2140.06 1.4 212.06 1.6 15.16 1.1 180.16 4.0
D 0.86 5.8 0.46 6.7 1.66 6.3 1.96 15.8

Note.D 5 ¥ i51
6 uAi

T 2 Ai
Mu 6 ¥i51

6 uRi u, with Ai
T, Ai

M, andRi being the theoretical values listed in Table 1, the corresponding mean values, and RMSD listed
in Table 2.
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used; however, this would not affect the comparison of char-
acteristics of the LP, MLP, TLS, and IQML methods in these
conditions. The data listed in Table 3 clearly indicate that the
IQML method is much less susceptible to noise perturbation.
For example, the IQML method, with LP order and rank being
14 and 6 retrieved all 6 resonances in the simulated signals in
39 out of 50 trials (78%) at a 15-dB noise level, whereas, the
only partially successful method, the TLS method retrieved
these resonances in 22 of the trials (44%).

If the “true” rank of the experimental data is not knowna
priori and in order not to miss any peaks, we would normally
choose a large number for the true rankp. We applied the LP,
MLP, TLS, and IQML methods to the first 128 complex data
points of a simulated FID containing 1024 complex data points
with the LP order and the rank being 24. Figures 1a and 1b
display the spectra obtained by FT of the simulated FID with
and without additive noise. Figures 1c–1f show the spectra
calculated from the LP, MLP, TLS, and IQML algorithms by
averaging the 50 spectra calculated from the parameters esti-
mated from each of the 50 simulated FIDs which contains a
different random noise generated at a SNR of 10 dB. These
spectra clearly indicate that the IQML algorithm is much more
robust than the TLS and LP methods even when the rank is not
known. From Table 2 and Fig. 1 of this study, the MLP method
is only slightly more robust than the LP method and the TLS
method is noticably better than both the MLP and LP methods.

It is important to point out thatib(k11) 2 b(k)i , e is not
always applicable as the termination criterion. When the SNR
is high, this criterion can be reached within 5 iterations in our
test if e 5 1024 was used. When the SNR is low, the algorithm
may not converge by using this criterion. In the simulation
reported here, we used 5 iterations in each case rather than this
termination criterion. However, there is no guarantee that 5

iterations are proper for other cases. It is recommended to use
2 to 4 iterations in the general study.

Here, we demonstrate that this method is the most robust
by processing an experimental 1D13C sucrose NMR spec-
trum, recorded on a Bruker ARX 300, when compared with
the other paramatric methods described above. To make the
spectral line widths more similar to those of1H or 31P
spectra, Cr(acac)3 (0.01-M concentration) was added to the
sample. In order to statistically compare the IQML method
among the TLS and LP methods, we average the estimated
IQML, TLS, and LP spectra calculated starting from the
third, fourth, fifth, and sixth data points, with effectively
different noise entries, with the LP order being the even
numbers between 12 and 40. The first two data points were
omitted because, due to switch off/on time of the receiver,
these data were not measured accurately. The rank used was
chosen to be 12 as there are 12 carbon peaks for this sucrose.
The number of complex data points used for these calcula-
tion was 128 and 1024 complex data points were recorded
with 20 scans. Figure 2A shows the 1D13C sucrose FFT
spectrum. Figure 2B shows the 1D averaged13C sucrose LP
reconstructed spectrum obtained according to the aforemen-
tioned conditions. Figures 2C and 2D show the 1D TLS and
IQML reconstructed spectra in which the calculated phases
were not used, since each calculation involved different
starting points. Under these circumstances, the IQML
method has retrieved all the resonances, whereas the TLS
and LP spectra have either missing peaks or artifacts in
amplitude and frequency due to inaccurate estimation of the
frequencies and amplitudes of the resonance peaks. As the
performance of the MLP method is very similar to the LP
method (Fig. 1 and Table 3), it is not needed for this
evaluation. Figure 2 clearly indicates that the IQML method

TABLE 3
Number of Trials among Total 50 Trials in Which Estimations Did Not Miss Any Peak with the Rank Being 6

SNR
(dB)

LP order

6 10 14 18 22 26 30 34 38 42 46 50

20
LP 0 0 0 28 48 50 50 50 50 50 50 50
MLP 0 0 0 29 48 50 50 50 50 50 50 50
TLS 0 12 48 49 50 50 50 50 50 50 50 50
IQML 0 49 50 50 50 50 50 50 50 50 50 50

15
LP 0 0 0 0 1 31 38 43 45 42 40 46
MLP 0 0 0 0 1 34 39 44 46 44 41 45
TLS 0 2 22 35 35 44 43 45 48 45 44 44
IQML 0 26 39 44 46 47 45 47 47 46 47 45

10
LP 0 0 0 0 0 0 1 2 8 6 7 9
MLP 0 0 0 0 0 0 1 3 11 8 10 11
TLS 0 0 3 6 5 12 16 16 15 16 22 19
IQML 0 1 5 11 12 10 19 15 15 13 23 19
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is much more robust than TLS and LP methods over a broad
range of conditions. The doublet around 1000 Hz cannot be
fully resolved by these parametric methods because the
number of the FID used for calculating the spectra shown in
Figs. 2B and 2C is not large enough. The presence of
noise-like peaks in Figs. 1 and 2 for the TLS and IQML is
due to inaccurate estimation of resonances in a few of the

calculations with different noise entries. Whereas in the LP
calculation, these erroneous signals and very often the true
signals cannot be selected according to our selection rules
described in the text resulting in relatively smooth baselines.

CONCLUSION

Through the detailed study described above, we can con-
clude that the IQML method is the most accurate parametric
method for estimating spectral parameters from simulated

FIG. 2. (A) The 1D Fourier-transformed13C sucrose NMR spectrum.
(B)–(D) The spectra obtained from the LP, TLS, and IQML methods, averaged
over spectra calculated using 128 complex data points starting from the third,
fourth, fifth, and sixth data points with the LP order being the even numbers
between 12 and 40, and the rank used being 12.

FIG. 1. (a)–(b) The 1D spectrum obtained by Fourier transform of a
simulated FID containing 1024 complex data points with and without 10 dB
additive noise. Parts (c)–(f) show the spectra calculated from the LP, MLP,
TLS, and IQML algorithms by averaging the 50 spectra calculated from the
parameters estimated from each of the 50 simulated FIDs which contains a
different random noise generated at a SNR of 10 dB. LP order and rank used
for the calculation were 24.
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and experimental FID data sets. However, due to the greater
computational complexity of the IQML method, it is about
a few times slower than the LP and TLS methods. In this
study we have demonstrated that the IQML method is a
powerful technique for direct quantitative spectral analysis
in NMR spectroscopy, for instance, the quantitative analysis
of 31P NMR spectrain vivo. The IQML method can also be
used to provide an excellent starting point for further spec-
tral refinement after estimation of spectral parameters from
the experimental data.
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